process measurement solutions

KDG Rotameter® Series 2000 Variable-area flowmeters

Data sheet 1706

Features

- Tubes and/or floats simply replaced without loss of calibration
- Quick-release tubes
- Wide range of liquids or gases
- Individual calibration available to accuracy Class 1.6 (VDI/VDE 3513)

Series 2000 VA (variable-area) flowmeters are general purpose glass-tube instruments for non-corrosive applications

Description of Operation

Glass tube VA meters have an internal taper over the full working length of the tube with the wider end at the top. The working fluid, flowing up the tube, causes a float within the tube to settle at a point where its mass is just balanced by the upward forces due to the flow through the annulus between float and tube. The greater the flow the higher the float must rise to create a larger annulus. Float position is read off against a scale calibrated in flow rate units.

Introduction

Series 2000 units incorporate standard, interchangeable tubes and floats. Either or both components can be replaced without loss of calibration accuracy beyond the limits set out in the table on page 3. Tubes can be removed easily for cleaning or replacement without disconnecting the instrument from the pipeline. Uncalibrated instruments are supplied with calibration charts for air or water flows at standard pressure and temperatures.

Flow scales are custom made and predicted from experimental data. They can be individually calibrated to an accuracy of Class 1.6 (VDI/VDE 3513),

i.e $\pm 1.2\%$ of indicated flow $\pm 0.4\%$ full scale reading.

Construction

The chassis is a mild steel channel with welded end plates, through which the connections are secured. The metering tube is held in a simple quick release fixing and sealed with internal 'O' rings in Viton 'A' or nitrile rubber. The flow scales are pivoted to allow access to the metering tube and accessories. The front of the instrument is protected by a perspex dust cover.

For flush panel mounting, the chassis is designed to allow access to the tube through the panel cut-out and the instrument is supplied with a black bezel with quick release fasteners.

Tubes

Metering tubes are made from borosilicate glass and are fully annealed and stress relieved. There are eight basic sizes of tube, supplemented by the eight 'X' series, which use the same sizes of float as the basic series but give intermediate capacities.

The tubes have both ends expanded to common and precise internal diameter to suit British standard 'O' rings. Each tube is identified by the size number and the suffix 'E', e.g. 18E or 18XE.

A millimetre scale is fired on to each tube and the separate scale plate may be related to this.

Temperature Rating

The maximum working temperature is 100°C.

Pressure rating The maximum working pressure for liquid service is given in the table below.

N.B For gas flows, these ratings must be reduced by a factor of 4.

If polycarbonate safety cover is fitted in place of the perspex cover a factor of 2 may be used.

Connections

The standard end connections are internally screwed B.S.P taper in gunmetal but stainless steel is available to special order. The thread sizes are given below.

Tube	7X-	18X-	35X-	65X-
Size	14	24	47	65
B.S.P taper	½ in.	1 in.	1½	2 in.

Screwed union connections in brass can also be supplied. The instrument then becomes Type 2025. Thread sizes are given in the table below.

Tube Size	7X- 14	18X- 24	35X- 47	65X- 65
B.S.P taper	½ in.	¾ in.	1 in.	11/2
			·	in.

Alternative threads can be supplied to special order.

Floats

All sizes of float are available in the following materials:

Type S

Stainless steel 316.S16 for use with most liquids

Type A

Anodised aluminium alloy, for non-corrosive gases.

Туре К

Karranite, a low density ceramic material, for corrosive liquids and gases.

Flow Scales

Separate, engraved scale plates are related to the millimetre reference scale and are easily interchanged, enabling the instrument to be converted for use with other fluids.

Tube Size	7X,	10X,	14X,	18X,	24X,	35X,	47X,	65X,
	7	10	14	18	24	35	47	65
Max. working pressure bar	11.2	10.0	10.0	10.0	8.5	7.0	6.0	4.5

Flow Capacities

The nominal flow capacity of each tube and float combination is shown in the table below. The flows are given in litres per minute, with liquids at 20°C and gases at 15°C/1013 mbar abs.

NOTE: Engraved scale plates closely follow BS. 3693: 1964, "The design of scales and indexes". The maximum scale value will be taken from the nearest convenient and rational flow rate within the capacity of each instrument and this may not exactly correspond with the nominal values quoted in the table. The minimum scale value is normally approximately 10% of the maximum.

Tube Sizes	7X	7	10X	10	14X	14	18X	18	24X	24	35X	35	47X	47	65X	65
Float Type 'S'																
Water	0.8	1.0	1.5	2.0	3.0	5.0	8.0	10	15	20	30	50	80	100	150	200
Paraffin	0.98	1.2	1.75	2.6	3.6	6.0	9.4	12.5	18	24	34	58	90	120	190	250
Petrol	1.1	1.3	1.95	2.7	4.0	6.4	9.8	13	19	25	36	60	94	125	195	260
Ammonia 30%	0.92	1.1	1.65	2.4	3.4	5.6	8.8	11.5	16.5	22	31	54	84	110	175	230
Caustic Soda 25%	0.45	0.58	0.92	1.45	2.1	3.8	6.2	8.4	12.5	17.5	24	43	66	90	140	185
Float Type 'A'																
Air	8	10	15	2.0	30	50	80	100	150	200	300	500		1000	1500	2000
Hydrogen	21	36	56	82	110	190		390	580	800	1100				6200	8200
Helium	17	22	33	46	70	123	200	250	382	516	776		2020	2000	4000	5400
Town's gas	12	15	23	33	44	74	110	150	220	280	430	740	1100		2300	3100
(S.G.0.5)	11.5	14.5	22	31	42	70	105	140	210	270	410	700	1000		2200	2900
Methane	11.5		22	30	41	68	105	135	200	260	390	680	1000		2100	2800
Ammonia	8	10	15	20	30	50	80	100	150	200	300	500	760	1000	1500	2000
Carbon Monoxide	8.0	10	15.5	22	29	49	76	100	145	190	290	500	740	960	1550	2000
Oxygen	7.2	8.8	13.5	20	26	44	68	90	130	170	250	440	660	860	1400	1850
Argon	7.0	8.8	13.5	19	25	42	64	86	125	165	240	420	620		1350	1750
Carbon Dioxide	7.0	9.0	13.5	19	26	42	64	84	125	160	240	420	620	820	1300	1750
Propane	64	7.8	12	16.5	22	36	56	74	105	140	210	330	540	700	1150	1500
Butane																
Float Type 'K'																
Air	15	18	26	38	56	90	140	175	280	370	520	900		1750	2800	3800
Water	0.35	0.4	0.66	0.9	1.35	2.25	3.5	4.5	7	9.6	14	22.5	35	47	76	100

Accuracy

The accuracies shown in the adjoining table are expressed as a percentage of full scale reading. When higher accuracies are required, the instruments can be flow calibrated to class 1.6 (VDI/ VDE 3513) accuracy.

Pressure Loss

The pressure loss due to the weight of the float is given in the adjoining table. The figures are expressed in mbar.

Tube size	7X,	10X,	14X, 14	18X,	24X,			65X,
	/	10	14	10	24	35	47	60
% F.S.R	5	5	5	2.5	2.5	2.5	2.5	2.5

	7X, 7	10X, 10	14X, 14	18X, 18	24X, 24	35X, 35	47X, 47	65X, 65
Float Type 'S' in water	4.8	6.4	9.1	11.8	15.5	23	30	36
Float Type 'A' in air	0.6	0.9	1.1	1.4	1.5	2.8	3.6	4.3
Float Type 'K' in water	1.0	1.4	2.0	2.5	3.4	4.9	6.6	7.8
Float Type 'K' in air	1.7	2.3	3.3	4.2	5.6	8.2	11	13

Installation

The series 2000 are suitable for inline, projection or flush panel mounting but they must be installed vertically with the liquid flowing upwards. Sudden changes of pipe section at the inlet or fittings which cause flow disturbances should be avoided.

Full installation details are given in publication MI 1706.

Accessories

An adjustable photo-electric alarm or reed switch alarm can be supplied to detect high or low alarm conditions. The composite illustrations shows how the alarms are mounted inside the chasis.

Other accessories available include a fluorescent illuminator, black bezel for flush panel mounted instruments and a polycarbonate safety cover for higher pressure gases. **Photo-electric alarm** The alarm is fully adjustable but, when used to detact minimum flow, it will operate when the bottom of the float obscures the light beam. With the larger tubes it may not be possible to set the alarm to correspond with the minimum capacity of the instrument.

The standard alarm requires 200/250 volts, 50 cycles supply but alarms for other voltages are available to special order.

Reed switch alarm Stainless steel floats, sizes 18 to 65 inclusive, may be fitted with permanent magnet which will operate a reed switch mounted alongside the glass tube. The reed switch is adjustable and may be set in any scale position. The maximum power that can be switched is 10 watts, operating at a maximum voltage of 500V d.d. or a maximum current of 0.5 amps.

Illuminator A fluorescent illuminator which uses an 8 watt tube can be fitted inside the chasis. The illuminator can be supplied for use on either 100 or 240 volts supply.

The above illustration is a composite showing both reed and photo-electric alarms

UKAS QUALITY IANAGEMEN 001

KDG INSTRUMENTS

Compton Way Crawley West Sussex England RH10 2YZ Tel: 01293 525151 Fax: 01293 530849 e-mail: sales@solartron.com www.solartron.com a Roxboro Group Company

Bestobell Mobrey GmbH	Deutschland	tel: 0211/99 808-0
Solartron Mobrey Ltd	China	tel: 021 6353 5652
Mobrey sp z o o	Polska	tel: 022 871 7865
Mobrey AB	Sverige	tel: 08-725 01 00
Mobrey SA	France	tel: 01.34.30.28.30
Mobrey SA-NV	Belgium	tel: 02/465 3879
Solartron Mobrey	USĀ	tel: (281) 398 7890

The right is reserved to amend details given in this publication without notice

1706 DEC 00